Alkanes - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)(i)	An answer that makes reference to the following: • Heptane / petrol containing heptane: burns less efficiently / smoothly (than branched chains / cycloalkanes) or does not combust efficiently or causes pre-ignition / knocking		(1)

Question Number	Answer	Additional guidance	Mark
(a)(ii)	•	Ignore bond lengths and bond angles	(1)
		Ignore structural or displayed formulae as working	
		Ignore skeletal formula with any CH₃ groups specified	

Question number	Answer	Additional guidance	Mark
(a)(iii)		Example of equation:	(1)
	correct equation	$C_7H_{18} \rightarrow C_7H_{14} + H_2$	
		Allow multiples	
		Ignore any other type of formulae	

Question number	Answer	Additional guidance	Mark
(a)(iv)	An explanation that makes reference to the following points:	Ignore any reference to oxides of sulfur / sulfur dioxide / sulfuric acid in answer	(2)
	(oxides of nitrogen / these compounds) dissolve in / react with / combine with / mix with water (1)	Allow moisture / rain / clouds for water Ignore react with air / oxygen	
	(to form nitric / nitrous) acid(s) / acidic solution / acid rain (1)	Allow decreases pH of solution / rain	

Question number	Answer	Additional guidance	Mark
(b)(i)	Initiation (step / reaction)	Allow initiating (step) Ignore free radical / homolytic / chain / initial (step) Do not award heterolytic	(1)

Question number	Answer	Additional guidance	Mark
(b)(ii)		Allow propagation steps in either order	(2)
		Allow • anywhere on correct species	
	• $C_7H_{16} + Cl \cdot \rightarrow C_7H_{15} \cdot + HCl$ ($C_7H_{15} \cdot + Cl_2 \rightarrow C_7H_{15}Cl + Cl \cdot$ (1	Ignore curly arrows, even if incorrect	
		Do not award • on species that are not radicals	
		Penalise omission of • or incorrect number of hydrogens in heptane once only in b(ii), b(iii) and b(iv)	

Question number	Answer	Additional guidance	Mark
(b)(iii)	• C ₇ H ₁₅ • + C ₇ H ₁₅ • → C ₁₄ H ₃₀	TE on alkyl radical in (b)(ii)	(1)
		Do not award product written as 2C ₇ H ₁₅ / C ₇ H ₁₅ C ₇ H ₁₅	

Question number	Answer	Additional guidance	Mark
(b)(iv)	An explanation that makes reference to the following points: • chlorine(free) radical / atom / CI• removes another hydrogen (atom in the product / chloroheptane) (1) • (this free) radical reacts with another chlorine molecule / CI₂ (to form dichloroheptane) or (this free) radical reacts with a chlorine radical / atom / CI• (to form dichloroheptane) (1)	TE on alkyl radical in (b)(ii) Allow $C_7H_{15}CI + CI \bullet \rightarrow C_7H_{14}CI \bullet + HCI$ Ignore $CI \bullet$ substitutes a H atom Allow $C_7H_{14}CI \bullet + CI_2 \rightarrow C_7H_{14}CI_2 + CI \bullet$ or $C_7H_{14}CI \bullet + CI \bullet \rightarrow C_7H_{14}CI_2$ Ignore just 'further substitution' Ignore $C_7H_{16} + 2CI_2 \rightarrow C_7H_{14}CI_2 + 2HCI$ Any answer that shows $2CI$ substituted in one step	(2)

Q2.

Question number	Answer	Mark
	B fractional distillation	1

Q3.

Question number	Ans	swer	Mark
	The	e only correct answer is D (general formula)	(1)
	A is incorrect because boiling temperature increases as the number of carbon atoms increases		
	В	B is incorrect because density increases as the number of carbon atoms increases	
	C	is incorrect because the alkanes have different empirical formulae	

Q4.

Question number	Answer	Mark
	A ethanol	1

Question number	Answer	Additional guidance	Mark
(a)	H H H H H H (1)	Allow CH ₃ in branches	3
	+ H H H H H H H H H H H H H H H H H H H	Allow 2 marks for 3 correct structural or skeletal formulae or any combination of these	
	• H		

Question number	Answer	Additional guidance	Mark
(p)	2,4-dimethylhexane	Ignore punctuation errors	1

Question number	Answer	Additional guidance	Mark
(c)	• molecular formula: C ₅ H ₁₂ (1		2
	boiling temperature 25 - 40 °C (1)	Allow any temperature or range within the given range	

Question number	Answer	Additional guidance	Mark
(d)(i)	• $C_3H_8 + 31/2O_2 \rightarrow C + CO + CO_2 + 4H_2O$	Allow multiples Ignore state symbols, even if incorrect	1

Question number	Answer		Additional guidance	Mark
(d)(ii)	An explanation that makes reference to the following points:			2
	(carbon monoxide) reacts with haemoglobin (in the blood)	(1) (1)	Allow forms carboxyhaemoglobin	
	preventing it from carrying oxygen (around the body).	(.,		

Question number	Answer	Additional guidance	Mark
(e)(i)	(4)	Allow equations in either order Penalise missing • once only	2

Question number	Answer	Additional guidance	Mark
(e)(ii)	the products are 1-chloropropane and 2-	Allow any unambiguous	1
	chloropropane	formulae Ignore molecular formulae	

Question number	Answer	Additional guidance	Mark
(e)(iii) • the chlorine free radical can remove a hydrogen from either the end carbon atoms or the central carbon atom			1

Question number	Answer	Additional guidance	Mark
	 two propyl (free) radicals react together or 	Ignore just '(two free) radicals react together'	1
	• C_3H_7 • + C_3H_7 • $\rightarrow C_6H_{14}$	Do not allow molecules/ions	

Question number	n Answer		Additional guidance	Mark
(e)(v)			Examples of structures and names:	2
	• structure ((1)	CH ₃ CH ₂ CHCl ₂ 1,1-dichloropropane	
	corresponding name ((1)	CH ₃ CHClCH ₂ Cl 1,2-dichloropropane CH ₃ CCl ₂ CH ₃ 2,2-dichloropropane CH ₂ ClCH ₂ CH ₂ Cl 1,3-dichloropropane	
			Allow displayed, structural or skeletal formulae or any combination of these	

Q6.

Question number	Answer	
	The only correct answer is B (5)	(1)
	A is incorrect because there are 5 structural isomers – hexane, 2-methylpentane, 3-methylpentane,	
	C is incorrect because there are 5 structural isomers	
	D is incorrect because there are 5 structural isomers	